SH-III/PHS/302/C-6/19

B.Sc. 3rd Semester (Honours) Examination, 2019-20 PHYSICS

Course ID : 32412

Course Code : SH/PHS-302-C-6

Course Title : Thermal Physics

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- **1.** Answer *any five* questions:
 - (a) State the zeroth law of thermodynamics.
 - (b) State with reasons whether internal energy is a state function or a path function.
 - (c) Assuming ideal gas behaviour estimate the number of moles in $1m^3$ of air under atmospheric pressure $(1 \cdot 014 \times 10^5 \text{ N/m}^2)$ at 0°C.
 - (d) What are the units of 'a' and 'b' in van der Waal's equation of state?
 - (e) Under what condition a real gas will behave as an ideal gas?
 - (f) What do you mean by "most probable velocity" of gas molecules?
 - (g) Define 'inversion temperature' in case of liquefaction of gases.
 - (h) What is meant by enthalpy of a system?

Answer any two of the following:

- **2.** (a) Define isothermal bulk modulus.
 - (b) Find the work done by a perfect gas during adiabatic process.
 - (c) Prove that, the slope of adiabatic curve through a point in PV graph is $\gamma \left(=\frac{c_p}{c_v}\right)$ times the slope of isothermal curve through the same point. 1+2+2=5
- 3. (a) Prove the thermodynamic relation: $Tds = C_v dT + T \left(\frac{\partial P}{\partial T}\right)_v dV$.
 - (b) Calculate the change in entropy if 2 gm of ice melts into water at NTP. Latent heat of ice = 80 cal/gm. 3+2=5
- 4. (a) Show that the probability of a gas molecule travelling a distance 'x' without suffering a collision is $e^{-\frac{x}{\lambda}}$, λ being mean face path of the gas.
 - (b) The mean free path of molecules in a certain gas is 4.0 cm. How many out of 10,000 free paths are longer than 4.0 cm? 4+1=5
- 5. (a) Explain the principle of cooling by the process of adiabatic demagnetization.

32412/17151

Please Turn Over

Full Marks: 25

1×5=5

5×2=10

SH-III/PHS/302/C-6/19

(2)

(b) Draw the P-V diagram for working of a reversible Carnot engine. 3+2=5

10×1=10

Answer any one question:

- 6. (a) Distinguish between reversible and irreverssible process.
 - (b) Prove the equivalence of Kelvin-Planck and Clausius statement of second law of thermodynamics.
 - (c) Show that entropy always increases in irreverssible process. 2+6+2=10
- 7. (a) Establish Maxwell velocity distribution formula-

$$dn = na^3 e^{-b(u^2 + v^2 + w^2)} du dv dw,$$

where the symbols have their usual meanings.

(b) It T_c , P_c and V_c are the critical values of temperature, pressure and volume, respectively, of a gas and 'a', 'b' are the van der Waal's constants, then show that, $V_c = 3b$, $P_c = \frac{a}{27b^2}$ and $T_c = \frac{8a}{27bR}$.